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measured with the plane of the reference at the short
circuit is shown in Fig. 9(a). The measurement of the
impedance locus of a short circuit referenced so as to
give one complete circle on the reflection coefficient
plane as the frequency is varied over the 12 per cent
X-band is shown in Fig. 9(b). The display on the ex-
panded reflection coefficient plane of the impedance
locus of the single tuned circuit described above is
shown in Fig. 10(a). Comparison of these photographs
with the results yielded by the waveguide circuit alone
(Figs. 6, 7, and 8) indicate that the accuracy of the en-
tire system is essentially the same as the accuracy of
the displays plotted from the output voltages of the
waveguide circuit.

Finally, to further illustrate the usefulness of the
automatic impedance plotter, a photograph of the ex-
panded display resulting from the impedance measure-
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ment of a multiple-tuned waveguide filter circuit having
a complex impedance locus is shown in Fig. 10(b). A
measurement of this impedance locus by the usual
slotted line techniques takes at least one hour; the
measurement is performed instantaneously by the auto-
matic impedance plotter following a setup time of about
ten minutes. In addition, the measurement by the im-
pedance plotter insures that all of the details of the im-
pedance locus will be observed since the measurement
is performed continuously over the frequency band.

It should be noted that in the photographs of the
impedance plotter display, the crt trace at the center of
each photo indicates the center of the reflection coeffi-
cient plane (w=0). The crt trace is returned to the
center of the screen once during each frequency sweep
cycle so as to indicate the impedance locus for the match
condition.

A Method of Measuring Dissipative Four-Poles Based
on a Modified Wheeler Network*

H. M. ALTSCHULERTY

Summary—A method of abstracting the parameters of dissipative
four-poles from measured data is presented here. This semi-preci-
sion method is applicable to symmetric four-poles and results
directly in a conveniently symmetric network representation. It is
based on the modified Wheeler representation, a new and com-
pletely general network, which is introduced in this paper. In addi-
tion to the derivation of the network and of the analysis, the relation-
ship that the network bears to its dual, to the impedance Tee, and
to the admittance Ri is presented.

INTRODUCTION

HE experimental procedures in four-pole meas-

| urements and the subsequent analyses of data
can be divided roughly into two classes: “point”
measurements on the one hand, and “precision” and
“semi-precision” measurements on the other. While
point measurements require that a specific and mini-
mum number of datum points be taken and analyzed,
precision and semi-precision measurements require that
a sufficiently large number of different datum points are
taken to be analyzed later by a technique which effec-
tively averages them. In the latter class of measure-
ments, which is of interest here, essentially two meth-
ods are available for measuring dissipative four-poles,

* The work for this paper was conducted under Contract AF-
19(604)-890 sponsored by the Air Force Cambridge Research Center.

t Microwave Research Institute, Polytechnic Institute of Brook-
Iyn, Brooklyn, N.Y.

as far as the author knows: the method due to Felsen
and Oliner! and its variations, and Deschamps’
method.?

It is pointed to note that, while the Felsen-Oliner net-
works are constituted of conventional network ele-
ments, they are not capable of displaying structural
symmetry explicitly. The Deschamps method, in con-
trast, results in a scattering representation, and as such
displays the symmetry (if any) of the measured struc-
ture explicitly, i.e., for symmetric structures, regardless
of reference planes employed in the representation,
| Su| =|Sz|. It is apparent, then, that no precision or
semi-precision measurement method has been available
which directly results in a network (as opposed to a
matrix representation) capable of representing sym-
metric structures in a symmetric fashion. To obtain
such a network from precision or semi-precision measure-
ments, it has been necessary to transform either the
scattering representation or one of the Felsen-Oliner net-

1 L. B. Felsen and A. A. Oliner, “The Precision Measurement of
Equivalent Circuit Parameters of Dissipative Microwave Struc-
tures,” Report R-282-52, PIB-221, Polytechnic Inst. of B’klyn,
Microwave Res. Inst.; November, 1952; also “Determination of
equivalent circuit parameters for dissipative microwave structures,”
Proc. IRE, vol. 42, pp. 477-483; February, 1954.

2 G. A. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction,” Jour. Appl. Phys., vol. 24,
pp. 1046-1050; August, 1953.
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works. Although such transformations are conception-
ally simple, the computations involved are time con-
suming. In addition to its simplicity and to the physical
insight which a network of symmetric form may pro-
vide, it also permits the application of a bisection theo-
rem. In contrast, neither the Felsen-Oliner networks nor
the scattering representation resulting from the Des-
champs method can be bisected in the usual simple
fashion.

In this connection the work of Harold A. Wheeler®+*
has been highly suggestive in that it describes a break
up of four-poles into two reactive portions separated by
a resistive portion. It is this form which has been used
as a starting point here for the development of a general
network representation which is symmetric in appear-
ance (and can hence be bisected) and which results
naturally from the analysis of measured data. Although
Wheeler describes neither the network given here nor
the method of measuring it, both its form and its
measurement are to some extent implicit in his work.
It has consequently been named “modified Wheeler”
network.

The modified Wheeler network can be employed only
in the dissipative case, although formally it is also a
proper representation for a lossless four-pole in the limit
as the no-loss case is approached in some systematic
fashion. Although the network itself is of interest as a
representation apart from measurements, the semi-pre-
cision method of measuring symmetric four-poles based
on it is stressed here and is recommended. The precision
method of measuring general four-poles is comparable
to the precision method due to Felsen and Oliner except
that the resulting network, of course, is different.

DEVELOPMENT OF THE MODIFIED
WHEELER NETWORK

In general, according to Wheeler,* any four-pole may
be represented by a simple attenuator located between
two purely reactive networks. Since this network form
can include more than six circuit parameters necessary
to specify a four-pole, various assumptions may be
made regarding the excess parameters. In the present
case, and without loss of generality, it is assumed that
the attenuator is symmetric and that it is matched in
both directions to the characteristic impedance of the
input transmission line of the structure being repre-
sented. The attenuator can therefore be specified by a
single number |T';|, the meaning of which will be made
clear later. Fig. 1 shows this more restricted form,
which constitutes the basis of the work presented. Here
B and B’ are the phase constants, and unity denotes the
normalized characteristic impedance of the adjoining
transmission lines.

3 Harold A. Wheeler and David Dettinger, “Measuring the
Efficiency of a Superheterodyne Converter by the Input Impedance
Circle Diagram,” Wheeler Monograph No. 9, March, 1949.

4 Harold A. Wheeler, “The Transmission Efficiency of Linear
Networks and Frequency Changers,” Wheeler Monograph No. 10,
May, 1949.

For the moment, let the attenuator be represented
by a symmetric Tee with series arms R; and shunt arm
R,, which are related by

Ri = +/R*+1— R, (1
since the attenuator is taken to be symmetric and
matched. When the attenuator is terminated in any im-
pedance Zs, its input impedance Z; is then obtained as

14 Zowv/R:* + 1
= — M
VRE+ 142,

in view of (1). It follows that the input reflection coeffi-
cient of the attenuator has the value
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Fig 1—A general network consisting of symmetric matched
attenuator between reactive four-poles.

Both factors on the right-hand side of this equation are
in the form of the reflection coefficient. The first, which
is seen to be positive real, is associated only with the
attenuator, while the second is simply the reflection
factor of the load impedance. The symbol ]Fa] has
consequently been adopted to denote a real positive
reflection coefficient. specifically the reflection coefficient
of the open-circuited attenuator. In view of its simple
operational behavior, |T| will be represented here by
a special network symbol as shown in Fig. 2(a).
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Fig. 2—(a) Reflection coefficient transformer;
(b) Scattering four-pole.

Since the attenuator element is matched in both di-
rections, the scattering coefficients S and Sz both equal
zero. Sis, on the other hand, takes on the value +/ m
In accord with the definitions of the incident and re-
flected quantities (see Fig. 2(b)) one writes the usual
scattering equations

b1 = a1S11 + @512,
by = auS12 -+ @sSe, (4)
' = bl/db Ty, = 02/172,

from which it is recognized at once that, for the element
of Fig. 2(a),
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by =aw [ Ta; @1 = bs/v/|Ta| 5 Ty = | Tu| To (3)
This is entirely analogous to the equations
E1=E2\/ﬁ, 11=Iz/\/7\7-, Z, = NZ,, (6)

where the subscripts 1 and 2 again refer to input and
output; £, [ and Z are voltage, current and impedance,
and & is the impedance ratio of a transformer. It is
therefore seen that the operational character of lI‘af
corresponds exactly to that of N. To underline this
“transformer” behavior, the attenuator element will
consequently be referred to as a “reflection coefficient
transformer.”
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Fig. 3—Reflection coefficient transformer between
lossless four-poles.
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It is well known that a network consisting of two loss-
less transmission lines coupled by a transformer is a
general representation of a reactive four-pole.® In view
of this fact (and of the reflection coefficient transformer
defined) the representation shown in Fig. 3 is entirely
equivalent to that of Fig. 1. In the network of Fig. 3,
the order of the three elements [’, ]I‘a’ and /'’ may be
interchanged arbitrarily, since each of these elements
operates on the reflection coefficient in a multiplicative
fashion, i.e.,

I(z1) = (6% | Ty | €72 )T(zs). (7
,"'_‘21__.‘. !
] ] 1
N |
i ' i
T T €7 —:74/3 '2)/2 TZ ‘I’Z

Fig. 4—Modified Wheeler representation.

The two transmission lines can consequently be grouped
together as a single line of length I, where I=1'41"".
The resulting network is that shown in Fig. 4. It is this
last representation® which has been named the “modi-
fied Wheeler” network. In the network of Fig. 4, the
reflection coefficient transformer and the transmission
line / may be incorporated to form a single lossy trans-
mission line with attenuation constant «, so that

5 A. Weissfloch, “Eine Transformation itber Verlustlose Vierpole
u;ld7seine Anwendung,” Hochfrequentz und Electroakustik, vol. 60, pp.
67-73.

8 Since the completion of the work presented here the author has
become aware of the fact that the same representation has been em-
ployed independently by Georges A. Deschamps, of Federal Tele-
comm.uilication Laboratories, in connection with as yet unpublished
material.

January

1 1
—In .
20 | T

T<Zl) = g‘“z(a-f-fﬁ)l:[‘(Zz);

(8)

o =

o~

On employing this notation the four-pole may be pic-
tured in the form shown in Fig. 5. Here the transmission
line is somewhat peculiar in that it has the real char-
acteristic impedance of the input transmission line and
a complex propagation constant. This situation, how-
ever, is well approximated in many practical lossy
transmission lines. It is seen that the form of the last
representation is perfectly symmetric so that it be-
comes particularly suitable for representing symmetric
structures. Of course the network of Fig. 4 also has a
symmetric form, although it appears to be asymmetric
to the eye. One can, for instance, picture it in the form
of Fig. 3 with I"=1""=1/2. While Figs. 4 and 5 repre-
sent arbitrary four-poles at any set of reference planes,
it is clear that one may represent any microwave struc-
ture at the special planes 71’ and T3’ by only the four
parameters #;, [I‘al, L and ny (or my, @, I, #s). Such a
reference plane shift leaves the remaining parameters
conveniently unaltered.

Fig. 5—Modified Wheeler representation employing
a lossy transmission line.

MODIFICATION OF THE REFLECTION COEFFICIENT LOCUS
BY THE VARIOUS CIRcuiT ELEMENTS

The representation which formed the point of de-
parture is a perfectly general representation of a (linear,
passive, reciprocal) four-pole. It follows that the net-
work of Fig. 5 (or 6, facing page) is general. However,
for the sake of completeness and since it is instructive
to follow the step-by-step transformation of the re-
flection coefficient locus by the various network ele-
ments, an independent proof of generality is given below.

Let it be assumed that the various values of T';, the
input reflection coefficient of a four-pole, corresponding
to various reactive output terminations Ty are known.
The output reflection coefficient locus is, of course, the
unit circle, while the corresponding input locus is some
circle as shown in Fig. 6(a). The center of the I'; circle,
which is located on a radial line § =6, can be shifted to
the 6; =0 axis in the I';-plane when I'; and T are related
by a transmission line /; as shown in Fig. 6(b). Likewise,
the circle with its center on the real axis of the T plane
can always be transformed into a circle with center at
the origin at the I'; plane when I'; and T, are related by
a suitably chosen transformer as shown in Fig. 6(c).
Whereas the radius of the circle does not change as a
result of the transformation from T'; to T, it does change
as a result of the step from I'; to T's. When Ty and I'; are
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related by the reflection coefficient transformer of the
proper value, the radius is increased to become unity in
the I'; plane, as shown in Fig. 6(d). Hence I'; represents
the input locus of a lossless four-pole. As already pointed
out, such a lossless four-pole can always be represented
by two transmission lines separated by a transformer
element. The transformation effected by the lossless
four-pole does not, of course, alter the locus in question,
but only redistributes the points on it.
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Fig. 6—Modification of the reflection coefficient locus
by various network elements.

The foregoing steps show that for any set of input
reflection coefficients corresponding to specific reactive
output terminations there exists a modified Wheeler
representation. This is equivalent to the assertion that
this network is capable of representing any (passive,
linear, reciprocal) four-pole.

When the four-pole in question is perfectly lossless
the reflection coefficient transformer wvanishes, i.e.,
!I‘af =1. Under these conditions the parameters /y, s, [,
n, and 7, still remain as part of the representation and
may be used in a relatively arbitrary fashion to char-
acterize the structure. If, in contrast, the condition of
no loss in the four-pole is approached as a limit in a
specific manner, i.e., when !I‘im is defined as a function
of ! PiM[ such that both approach unity simultaneously,
but in different fashions, the parameters in question are
well defined. Regardless of what this function is, }I‘a]
approaches unity in the limit. Here, as is implied by
Fig. 6, I';sr and T, are defined as the reflection coeffi-
cients (located on the circle) in the T', plane which have
the maximum and minimum absolute values respec-

tively. Tiar, T'im, Laar and Ty, are their transforms in the
T'; and the T, planes.

DERIVATION OF A SEMI-PRECISION MEASUREMENT
PROCEDURE FOR SYMMETRIC Four-PoLEs

As mentioned earlier, a procedure for obtaining a
symmetric network representation for symmetric struc-
tures is of particular interest. The modified Wheeler
network may form the basis either for a precision meas-
urement of arbitrary four-poles or for a semi-precision
measurement of symmetric four-poles, i.e., four-poles
which are known to be symmetric with respect to some
plane. The latter measurement is considered below.
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Fig. 7——Outline of experimental apparatus.

Let it be assumed that a structure known to be sym-
metric with respect to some plane is measured with the
apparatus outlined in Fig. 7. In this measurement the
planes T; and T3 (i.e., the ends of the structure to be
measured) need not be symmetric with respect to the
plane of symmetry. D and S are the distances from T}
and T to the probe (located at the voltage minimum)
and to the short circuit, respectively. Corresponding to
a series of settings of the short circuit, S, values of D,
and vswr are measured and input reflection coefficients
are computed via the standard equation

vswr — 1 )
— o@D+ = | 1, e,
vswr + 1

9

D vs. & CcoeuE

(6)

Fig. 8—Data plots necessary for semi-precision analysis
of symmetric structure.

(a)

The computed values are then plotted in polar coordi-
nates. The best circle is fitted through the data as shown
in Fig. 8(a) and a D vs. S curve, such as that shown in
Fig. 8(b), is also drawn.
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From this plotted data the various circuit elements
are then abstracted as is shown below. Initially, the
steps outlined in connection with Fig. 6 will be followed.
Since the center of the circle in the I'y plane has been
required to lie on the positive real axis, while its angular
location in the I'; plane is 6y, it can be seen that /;, the
length of the transmission line connecting these planes,
is given by

! o
1 26

The maximum and minimum reflection coefficients in
the I';-plane, I';pr and I';,, are readily identified since
they lie on the line joining the center of the chart to the
center of the data circle. Their counterparts in the I's-
plane lie on the real axis and have the same absolute
value; i.e., P1M=II‘,~M| and Iy, = iJI‘,-m , where the
plus sign is taken if I'.,, and I';3 have the same argu-
ment; the minus sign, if their arguments differ by .
These values in turn are related to the corresponding
values in the I';-plane by the transformer (#;:1) which
must be such that I'spr= —T'sn, since the I'; circle has
been required to have its center at the origin. One can
evidently solve for #; in terms of I'ix and Ty, since
equations of the form I'iy=F(n?, Tox) and Ty, =f(n:?,
—T.2) can be written from which I’y can be eliminated.
Substituting |Tyx| for | Ty and = |T.n| for i, gives

(10)

\ ‘/(1 + 1T DA [T ])
nyt =

(1 _’Pzﬂ[‘)(l +lem’)

The representation breaks down, i.e., #;2= «, when
!Pml =1. Here and in (12) the upper sign pertains if
the data circle does not include the origin of the I';
plane; the lower sign pertains if the circle does include
the origin. The value of the reflection coefficient trans-
former |T.| is simply given by IFWI Since 7, and

T4 are now both known, [Ty is readily found. One
therefore has

(11)

1-IraxDa i,I‘mJ)
(1+|FiM'>(1 $]I’im})

/(1—11*1@,!)(1 | Tim | )
(1+!P1M’)(1 +‘I‘1m1)

At this point in the analysis only the two line lengths
! and I remain unknown. Of course, 7, =#, in view of the
assumed symmetry. With reference to Fig. 6(d) it is
seen that ;3 and Tz, are both real and of unity abso-
lute magnitude. By comparing the values of T';, when
T's equals 1 and —1 respectively, it can be shown that
I'syr=1 and T3, = —1. When a short circuited transmis-
sion line, of such length Sy that I'; =T =1, terminates
the network at T (see Fig. 4) one may look into the net-
work at z; (toward the right) and equate the impedance
seen to infinity, since an open circuit is located at this
point in view of the special termination. From this rela-

IT.| = (12)
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tion one obtains

1
= — tan By + Su).
ni

cot Bl (13)
Likewise, when the transmission line is of such length
Sw that T3=T4,,= —1, a short circuit appears at z; so
that one gets

— tan Bl =

1
— tan Bk + S, (14)

5

Upon eliminating the tan Bl term from (13) and (14),
I» is found to be

1 (1 14 n
lz = ?{— cos™ l:——‘

; o8 S — m>]

—SM—Sm}.

In view of the arc cosine, (15) does not yield Z
uniquely. The resulting ambiguity is resolved on the
basis of the symmetry requirement; it follows that
(di—d,) in Fig. 7 must equal (,—1I) in Fig. 4, i.e.,

=l1+d2—d1.

(15)

(16)

Here [4 is known accurately from (10). As a rule, d; and
d» need not be known accurately, since /; need only be
found to a first order from (16). That value of /; re-
sulting from (15) which most closely corresponds to
the value found via (16) is assumed to be correct. It
should be noted that such a procedure places greater
reliance on the electrical measurement, which is based
on relative distance measurements and is consequently
generally more accurate, than on absolute distance
measurements.

The values of Si and S, to be used in (15) may be
obtained graphically with reference to Fig. 8. Sy has
been so chosen that I';=1, i.e., in such a manner that
the corresponding value in the T';-plane is T'ija. 6o, the
argument associated with T',, is obtained from the data
circle and Dy, the corresponding value of D, can then
be computed from (9). Sy is read from a D vs. S curve
such as the one shown in Fig. 8(b). In a like fashion,
S, can be abstracted by starting with the argument of
T'im, which in the case shown in Fig. 8 differs from that
of T';s by w. When I'iyr and I'y, have the same argument
(which is the case when the data circle does not include
the origin), D, =Dy and the values of .S,, and Sy must
be distinguished by considering the approximate values
of |I';| associated with the two values of .S read from
the D vs. S curve.

It follows directly from (14) that

] =

1 1
— E tan~—1! l:-— tan B(l; + Sm)] (17)

nl
where /; may be considered to be known. The two values
of the arc tangent leave / in doubt only by a trivial addi-
tive term of A,/2.
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Toe Dual NETWORK

The definition of duality employed here is that al-
ready given elsewhere.” As has been stated, the dual of
an n:1 transformer is a 1:z transformer. It can be
shown that both transmission lines and reflection coeffi-
cient transformers are their own duals, i.e., both the
form of the elements and their associated numerical
values remain unchanged in going to the dual repre-
sentation. In consequence the network dual of the
modified Wheeler network is identical to the modified
Wheeler network itself (see Fig. 4) except for the indi-
cated inversion of the transformers and for a quarter
wavelength shift of each reference plane. The dual dis-
cussed here is actually the network that results if a
single change is made in the original analysis; namely,
if instead of defining /; so that the center of the circle
in the TI'i-plane falls on the positive real axis, it is so
defined that the center falls on the negative real axis.

RELATION OF THE SYMMETRIC MODIFIED WHEELER
NETWORK TO THE IMPEDANCE TEE AND THE
ADpMITTANCE P1 REPRESENTATIONS

As pointed out earlier, it is always possible to repre-
sent a four-pole at special reference planes 77 and T3’
by only two transformers joined by a lossy transmission
line (see Fig. 5). In particular, a symmetric structure
may be represented in this fashion with the {further
simplification that #; =#.. The relationship of this sym-
metric representation and of its dual to the equivalent
impedance Tee and admittance Pi networks at the same
reference planes are shown in Fig. 9.

Let the modified Wheeler network at 7' and 73" and
the corresponding Tee be considered. Upon applying
open and short circuit bisection to both networks and
equating the real and imaginary parts of the input im-
pedances, one obtains

al 8l
72 tanh — (tang— + 1>
2 2

Ry -+ R12 = ’ (18)
Bl o
tan? — -+ tanh?—
2 2
Al al
#? tan — (tanh2~—— -1
2 2
X+ X1 = 8l ” : (19)
tan?— 4 tanh?-—
2 2
al Bl
n? tanh ? tan.2 ? +1
.R11 - R12 == <20>

A !
1 4 tan? E— tanh? had
2 2

7 H. Kurss, Appendix in L. B. Felsen and A. A. Oliner, “The
Precision Measurement of Equivalent Circuit Parameters of Dissi-
pative Microwave Structures,” Report R-282-52; PIB-221, Polytech-
nic Inst, of B’klyn, Microwave Res. Inst.; November, 1952.

Bl ol
n? tan — | tanh?-— — 1)
2 2
- (21)
al

14+t 2Blt h?
an?— tanh? —
2 2

Xu—Xm: -

It is readily shown that in these equations

ol 1—=V|r,|
tanh — = ————— -

(22)
2 1+ VT,

The parameters of the equivalent Tee are obtained at
once from (18) to (22). Since the value of / used here is
known only to within an additive constant of \,/2,
tan (81/2) may have one of two values depending on the
original choice of . If, say, the quantities in (18) to (21)
result from tan (BI/2) and the corresponding primed
quantities [in (23) below] result from tan [8(+),/2)/2]
then

Riy & Ry = Riy F Ry, X1 &+ Xo = X/ F Xyo'.

(23)
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Fig. 9—Modified Wheeler network at special reference planes, its dual
and their equivalent Tee and Pi networks.

This ambiguity is identically the one that occurs in
other input-output impedance type measurements
where the sign of Zi,, Yis or Sy remains in doubt. Re-
gardless of the choice of sign, the resulting Tee is valid as
an impedance transforming network. «/2, on the other
hand, is independent of the choice of / in view of the
definition of o [see (8)].
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Since the planes T}’ and T, are specially chosen to
eliminate /; and /,, the symmetric modified Wheeler net-
work at these planes is described by only the three
parameters 1, |T'.| and I (or #1, @ and I). The equiva-
lent Tee, however, requires four parameters for its com-
plete description, i.e., Ry, Xu, Riz and Xy, It can con-
sequently be concluded that the choice of the special
planes T}’ and T’ leaves only three of these independent
and makes the fourth subject to some restrictive rela-
tion. Inspection of (18) to (21) above shows that this
relation is

R11+R12 - RII-—R12) (24)
X11+X12 XII—X12
from which it follows that
Ry 1 X1 = RyaXoo. (25)

The parameters of the admittance Pi in terms of the
modified Wheeler network can also be obtained via a bi-
section procedure. If this is done and if the Pi and Tee
parameters are compared, the following surprisingly
simple relations are found:

Y = Zu/nt, Vie = Zya/nit (26)

Consequently, the Pi may be obtained from the Tee
(or vice versa) almost without effort. Eq. (26) shows
that ns=|Z| where |Z|=2Z12—Z,* (the impedance
determinant) and that, consequently, the impedance
(or admittance) determinant at 7y’ and T3y’ is real. Of
course, the dual of the Tee at 77’ and T3’ (i.e., the Pi
Yn*, Ym*) is given by

Yu* = Z, Y12* = Z12y (27)

and the dual of the Pi at 7' and T3’ (i.e., the Tee Zu*,
le*) by

Zy* = Z11/ﬂ14y Zl‘z* = le/ﬂ14- (28)

Januvary

The relations yielding the parameters ny, I and [T
in terms of a given Tee can also be obtained from (18)
to (21) by simple but tedious algebraic computations.

MATCHING THE MODIFIED WHEELER NETWORK

Wheeler points out that it is theoretically always pos-
sible to achieve a bilateral match for a network of the
type shown in Fig. 1. This, of course, also applies to the
present network (Fig. 4 or 5). When the input and out-
put transmission lines are of the same characteristic
impedance, the match may be achieved here by placing
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Fig. 10-—Modified Wheeler network and
adjacent matching structures.

the appropriate conjugate network at each end. When
the input and output transmission line characteristic
impedances differ, the conjugate of the 1:#, transformer,
which is n5:1, must be modified to be nsv/Z,/Z,:1. The
network and the appropriate matching networks (as-
suming two different characteristic impedances) are
shown in Fig. 10. A conjugate for line ] may, but need
not, be appended since it does not affect the matching of
the network.
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