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measured with the plane of the reference at the short

circuit is shown in Fig. 9(a). The measurement of the

impedance locus of a short circuit referenced so as to

give one complete circle on the reflection coefficient

plane as the frequency is varied over the 12 per cent

X-band is shown in Fig. 9(b). The display on the ex-

panded reflection coefficient plane of the impedance

locus of the single tuned circuit described above is

shown in Fig. 10(a). Comparison of these photographs

with the results yielded by the waveguide circuit alone

(Figs. 6, 7, and 8) indicate that the accuracy of the en-

tire system is essentially the same as the accuracy of

the displays plotted from the output voltages of the

waveguide circuit.

Finally, to further illustrate the usefulness of the

automatic impedance plotter, a photograph of the ex-

panded display resulting from the impedance measure-

ment of a multiple-tuned waveguide filter circuit having

a complex impedance locus is shown in Fig. 10(b). A

measurement of this impedance locus by the usual

slotted line techniques takes at least one hour; the

measurement is performed instantaneously by the auto-

matic impedance plotter following a setup time of about

ten minutes. In addition, the measurement by the im-

pedance plotter insures that all of the details of the im-

pedance locus will be observed since the measurement

is performed continuously over the frequency band.

It should be noted that in the photographs of the

impedance plotter display, the crt trace at the center of

each photo indicates the center of the reflection coeffi-

cient plane (w= O). The crt trace is returned to the

center of the screen once during each frequency sweep

cycle so as to indicate the impedance locus for the match

condition.

A Method of Measuring Dissipative Four~Poles Based

on a Modified Wheeler Network

H. M. ALTSCHULER~

Summary—A method of abstracting the parameters of dissipative
four-poles from measured data is presented here. This semi-preci-

sion method is applicable to symmetric four-poles and results
directly in a conveniently symmetric network representation. It is
based on the modified Wheeler representation, a new and com-
pletely general network, which is introduced in this paper. In addi-
tion to the derivation of the network and of the analysis, the relation-

ship that the network bears to its dual, to the impedance Tee, and
to the admittance Ri is presented.

INTRODUCTION

T
HE experimental procedures in four-pole meas-

urements and the subsequent analyses of data

can be divided roughly into two classes: “point”

measurements on the one hand, and “precision’) and

‘~semi-precision” measurements on the other. While

point measurements require that a specific and mini-

mum number of datum points be taken and analyzed,

precision and semi-precision measurement ts require that

a sufficiently large number of different datum points are

taken to be analyzed later by a technique which effec-

tively averages them. In the latter class of measure-

ments, which is of interest here, essentially two meth-

ods are available for measuring dissipative four-poles,

* The work for this paper was conducted under Contract AF-
19(604)-890 sponsored by the Air Force Cambridge Research Center.

t Microwave Research Institute, Polytechnic Institute of Brook-
lyn, Brooklyn, N.Y.

as far as the author knows: the method due to Felsen

and Olinerl and its variations, and Deschamps’

method.2

It is pointed to note that, while the Felsen-Oliner net-

works are constituted of conventional network ele-

ments, they are not capable of displaying structural

symmetry explicitly. The Deschamps method, in con-

trast, results in a scattering representation, and as such

displays the symmetry (if any) of the measured struc-

ture explicitly, i.e., for symmetric structures, regardless

of reference planes employed in the representation,

] SIII = ! SZZI . It is apparent, then, that no precision or

semi-precision measurement method has been available

which directly results in a network (as opposed to a

matrix representation) capable of representing sym-

metric structures in a symmetric fashion. To obtain

such a network from precision or semi-precision measure-

ments, it has been necessary to transform either the

scattering representation or one of the Felsen-Oliner net-

1 L. B. Felsen and A. A. Oliner, “The Precision Measurement of
Equivalent Circuit Parameters of Dissipative Microwave Struc-
tures, ” Report R-282-52, PIB-221, Polytechnic Inst. of B’klyn,
Microwave Res. Inst.; Novembe~, 195?; also “Determination of
equivalent circuit parameters for dlssipatwe microwave structures, ”
PROC. IRE, vol. 42, pp. 477-483; February, 1954.

Z G. A. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction,’~ Jour. A@@l. PIzys., VOI. 24,
pp. 1046–1050 ; August, 1953.
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works. Although such transformations are conception-

ally simple, the computations involved are time con-

suming. ln addition to its simplicity and to the physical

insight which a network of symmetric form may pro-

vide, it also permits the application of a bisection theo-

rem. In contrast, neither the Felsen-Oliner networks nor

the scattering representation resulting from the Des-

champs method can be bisected in the Llsual simple

fashion.

In this connection the work of Harold A. Wheeler3’4

has been highly suggestive in that it describes a break

up of four-poles into two reactive portions separated by

a resistive portion. It is this form which has been used

as a starting point here for the development of a general

network representation which is symmetric in appear-

ance (and can hence be bisected) and which results

naturally from the analysis of measured data. Although

Wheeler describes neither the network given here nor

the method of measuring it, both its form and its

measurement are to some extent implicit in his work.

It has consequently been named “modified Wheeler”

network.

The modified Wheeler network can be employed only

in the dissipative case, although formally it is also a

proper representation for a lossless four-pole in the limit

as the no-loss case is approached in some systematic

fashion. Although the network itself is of interest as a

representation apart from measurements, the semi-pre-

cision method of measuring symmetric four-poles based

on it is stressed here and is recommended. The precision

method of measuring general four-poles is comparable

to the precision method due to Felsen and Oliner except

that the resulting network, of course, is different.

DEVELOPMENT OF THE MODIFIED

WHEELER NETWORK

In general, according to Wheeler,4 any four-pole may

be represented by a simple attenuator located between

two purely reactive networks. Since this network form

can include more than six circuit parameters necessary

to specify a four-pole, various assumptions may be

made regarding the excess parameters. In the present

case, and without loss of generality, it is assumed that

the attenuator is symmetric and that it is matched in

both directions to the characteristic impedance of the

input transmission line of the structure being repre-

sented. The attenuator can therefore be specified by a

single number I I’. 1, the meaning of which will be made

clear later. Fig. 1 shows this more restricted form,

which constitutes the basis of the work presented. Here

O and ~’ are the phase constants, and unity denotes the

normalized characteristic impedance of the adjoining

transmission lines.

s Harold A. Wheeler and David Dettinger, “Measuring the
Efficiency of a Superheterodyne Converter by the Input Impedance
Circle Diagram, ” Wheeler Monograph No. 9, March, 1949.

4 Harold A. Wheeler, “The Transmission Efficiency of Linear
Networks and Frequency Changers, ” Wheeler Monograph No. 10,
May, 1949.

For the moment, let the attenuator be represented

by a symmetric Tee with series arms RI and shunt arm

Rz, which are related by

(1)

since the attenuator is taken to be symmetric and

matched. When the attenuator is terminated in any im-

pedance Za, its input impedance Z1 is then obtained as

1 + Z2~Ra2 + 1
21= —

~R22+l+z2 ‘
(2)

in view of (1). It follows that the input reflection coeffi-

cient of the attenuator has the value

dR22+l– 1..z2–1=/r/+r2
rl =

ti~22+l+l Z,+l “ “
(3)

Fig 1—A general network consisting of symmetric matched
attenuator between reactive four-poles.

Both factors on the right-hand side of this equation are

in the form of the reflection coefficient. The first, which

is seen to be positive real, is associated only with the

attenuator, while the second is simply the reflection

factor of the load impedance. The symbol I r. I has

consequently been adopted to denote a real positive

reflection coefficient. specifically the reflection coefficient

of the open-circuited attenuator. In view of its simple

operational behavior, I I’. I will be represented here by

a special network symbol as shown in Fig. 2(a).

‘4 ---i,=,+=-=4 ,2 b,-
‘_ (cl ~

J---l Iral *
I
‘+

+El=b’

(a) ‘
(b) ‘

Fig. 2—(a) Reflection coefficient transformer;
(b) Scattering four-pole.

Since the attenuator element is matched in both di-

rections, the scattering coefficients S11 and Sa, both equall

zero. S12, on the other hand, takes on tlhe value <-1 r. I ~~

In accord with the definitions of the incident and re-

flected quantities (see Fig. 2(b)) one writes the usual

scattering equations

bl = alSll + a~lz,

b2 = apSlz + aiYat, (4),

rl = bl/al, ra = aJba,

from which it is recognized at once that, for the element

of Fig. 2(a),
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This is entirely analogous to the equations

where the subscripts 1 and 2 again refer to input and

output; E, I and Z are voltage, current and impedance,

and N is the impedance ratio of a transformer. It is

therefore seen that the operational character of 117. (

corresponds exactly to that of N. To underline this

“transformer” behavior, the attenuator element will

consequently be referred to as a ‘(reflection coefficient

transformer. ”

Fig. 3—Reelection coefficient transformer between
lossless four-poles.

It is well known that a network consisting of two loss-

less transmission lines coupled by a transformer is a

general representation of a reactive four-pole.5 In view

of this fact (and of the reflection coefficient transformer

defined) the representation shown in Fig. 3 is entirely

equivalent to that of Fig. 1. In the network of Fig. 3,

the order of the three elements 1’, l17al and t“ may be

interchanged arbitrarily, since each of these elements

operates on the reflection coefficient in a multiplicative

fashion, i.e.,

r(2J = (e–~2~Z’I ra I e–~2~L’’)r(Z2). (7)

Fig, 4—Modified Wheeler representation.

The two transmission lines can consequently be grouped

together as a single line of length 1, where 1 =1’+ l“.

The resulting network is that shown in Fig. 4. It is this

last representational which has been named the “modi-

fied Wheeler” network. In the network of Fig. 4, the

reflection coefficient transformer and the transmission

line 1 may be incorporated to form a single lossy trans-

mission line with attenuation constant a, so that

J A. Weissfloch, “Eine Transformation iiber Verlustlose Vierpole
und seine Anwendung, ” Hochfrequentz und Electroakustik, vol. 60, pp.
67–73.-.

s S“ince the completion of the work presented here the author has
become aware of the fact that the same representation has been em-
ployed independently by Georges A. Deschamps, of Federal Tele-
communication Laboratories, in connection with as yet unpublished
material.
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r(zl) = e–zk+~~l qyzj); ~E_ln—.
:1 I;al

(8)

On employing this notation the four-pole maybe pic-

tured in the form shown in Fig. 5. Here the transmission

line is somewhat peculiar in that it has the real char-

acteristic impedance of the input transmission line and

a complex propagation constant. This situation, how-

ever, is well approximated in many practical lossy

transmission lines. It is seen that the ~orm of the last

representation is perfectly symmetric so that it be-

comes particularly suitable for representing symmetric

strut tures. Of course the network of Fig. 4 also has a

symmetric form, although it appears to be asymmetric

to the eye. One can, for instance, picture it in the form

of Fig. 3 with 1’ = l’t =1/2. While Figs. 4 and 5 repre-

sent arbitrary four-poles at any set of reference planes,

it is clear that one may represent any microwave struc-

ture at the special planes T1’ and Tj’ by only the four

parameters nl, 11’~1, 1 and n, (or n,, a, 1, nj). Such a

reference plane shift leaves the remaining parameters

conveniently unaltered.

-4? y

~:@:~

T,
+/

+ -k +’ Tz

Fig. 5—Modified Wheeler representation employing
a lossy transmission line.

MODIFICATION OF THE REFLECTION COEFFICIENT Locus

BY THE VARIOUS CIRCUIT ELEMENTS

The representation which formed the point of de-

parture is a perfectly general representation of a (linear,

passive, reciprocal) four-pole. It follows that the net-

work of Fig. 5 (or 6, facing page) is general. However,

for the sake of completeness and since it is instructive

to follow the step-by-step transformation of the re-

flection coefficient locus by the various network ele-

ments, an independent proof of generality is given below.

Let it be assumed that the various values of 17~, the

input reflection coefficient of a four-pole, corresponding

to various reactive output terminations I’. are known.

The output reflection coefficient locus is, of course, the

unit circle, while the corresponding input locus is some

circle as shown in Fig. 6(a). The center of the r; circle,

which is located on a radial line O =60 can be shifted to

the 01= O axis in the I’1-plane when I’; and I’1 are related

by a transmission line 11as shown in Fi;. 6(b). Likewise,

the circle with its center on the real axis of the I’1 plane

can always be transformed into a circle with center at

the origin at the 17J plane when 1’1 and I’z are related by

a suitably chosen transformer as shown in Fig. 6(c).

Whereas the radius of the circle does not change as a

result of the transformation from I’i to I’1, it does change

as a result of the step from I’1 to I’z. When rz and I’~ are
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related by the reflection coefficient transformer of the

proper value, the radius is increased to become unity in

the 173plane, as shown in Fig. 6(d). Hence I’3 represents

the input locus of a lossless four-pole. As already pointed

out, such a lossless four-pole can always be represented

by two transmission lines separated by a transformer

element. The transformation effected by the Iossless

four-pole does not, of course, alter the locus in question,

but only redistributes the points on it.

ri. PLANE r[ r.
1

e,= o
r2-PLANE

@

‘2 m

(c) t

‘Z M

rz LOCU5

0,=0

L-PLANE

(d)

B

+
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03=0

1 ?

Q

I

T, ‘2

Fig. 6—NIodification of the reflection coefficient locus
by various network elements.

The foregoing steps show that for any set of input

reflection coefficients corresponding to specific reactive

output terminations there exists a modified Wheeler

representation. This is equivalent to the assertion that

this network is capable of representing any (passive,

linear, reciprocal) four-pole.

When the four-pole in question is perfectly lossless

the reflection coefficient transformer vanishes, i.e.,

I I’al =1. Under these conditions the parameters 11,1,,1,

nl and nz still remain as part of the representation and

may be used in a relatively arbitrary fashion to char-

acterize the structure. If, in contrast, the condition of

no loss in the four-pole is approached as a limit in a

specific manner, i.e., when I I’i~ I is defined as a function

of I l?t~ I such that both approach unity simultaneously,

but in different fashions, the parameters in question are

well defined. Regardless of what this function is, I rti ]

approaches unity in the limit. Here, as is implied by

Fig. 6, I’;itl and rim are defined as the reflection coeff-

icients (located on the circle) in the r, plane which have

the maximum and minimum absolute values respec-

tively. r,,,~, I’1~, I’z~ and I’Z~ are their transforms in the

I’, and the I’2 planes.

DERIVATION OF A SEMI-PRECISION NIIEASUREMENr

PROCEDURE FOR SYMMETRIC FOUR-POLES

As mentioned earlier, a procedure for obtaining a

symmetric network representation for symmetric struc-

tures is of particular interest. The modified Wheeler

network may form the basis either for a precision meas-

urement of arbitrary four-poles or for a semi-precision

measurement of symmetric four-poles, i.e., four-poles

which are known to be symmetric with respect to some

plane. The latter measurement is considered below.

r+-----LWTFCTOR F.. /7/!4- 0..
A?r’z/f/”F JYq?Er,eY

Fig. 7—Outline of experimental apparatus.

Let it be assumed that a structure known to be sym-

metric with respect to some plane is measured with the

apparatus outlined in Fig. 7. In this measurement the

planes T1 and TZ (i.e., the ends of the structure to be

measured) need not be symmetric with respect to the

plane of symmetry. D and S are the distances from T1

and T2 to the probe (located at the voltage minimum)

and to the short circuit, respectively. Corresponding to

a series of settings of the short circuit, S, values of D,

and vswr are measured and input reflection coefficients

are computed via the standard equation

D

k
b vs. .$ L-4.32-

Dm- ---

L~m_ _..:.

II
,,

1: .5

$m .SM

(a) (4
Fig. 8—Data plots necessary for semi-precision analysis

of symmetric structure.

The computed values are then plotted in polar coordi-

nates. The best circle is fitted through the data as shown

in Fig. S(a) and a D vs. S curve, such as that shown in

Fig. 8(b), is also drawn.
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From this plotted data the various circuit elements

are then abstracted as is shown below. Initially, the

steps outlined in connection with Fig. 6 will be followed.

Since the center of the circle in the rl plane has been

required to lie on the positive real axis, while its angular

location in the 17i plane is 190, it can be seen that 11, the

length of the transmission line connecting these planes,

is given by

ll=–$. (lo)

The maximum and minimum reflection coefficients in

the I’i-plane, I’ill and 17;~, are readily identified since

they lie on the line joining the center of the chart to the

center of the data circle. Their counterparts in the 171-

plane lie on the real axis and have the same absolute

value; i.e., I’1~ = 117;~~] and I’1~ = ~ ] 17i~ \, where the

plus sign is taken if r ,n and 17~11 have the same argu-

ment; the minus sign, if their arguments differ by r.

These values in turn are related to the corresponding

values in the rz-plane by the transformer (nl: 1) which

must be such that 17z~r= — 172~, since the rz circle has

been required to have its center at the origin. One can

evidently solve for m in terms of I’111 and 171~, since

equations of the form 171itr=j(n12, I’Z~) and rl~ =~(nlz,

– I’,~) can be written from which I’,,W can be eliminated.

Substituting I I’i~l for I I’,M and ~ ] T’,~] for I’1~, gives

4(l+lriJf l)(l*jr,mj)
nlz = I

(l–lrtll ])(l~]riml) “
(11)

The representation breaks down, i.e., nlz = ~, when

I I’i.~1 =1. Here and in (12) the upper sign pertains if

the data circle does not include the origin of the J7;

plane; the lower sign pertains if the circle does include

the origin. The value of the reflection coefficient trans-

former 117a] is simply given by ] I’z,~~] . Since nlz and

I’1~ are now both known, ~rz~ ] is readily found. One

therefore has

l–

lra]=—

1+

d(l–lri,lf l)(l+lrtm])

(l+lriM])(171riml)
(12)

At this point in the analysis only the two line lengths

1and 1, remain unknown. Of course, n., = nl in view of the

assumed symmetry. With reference to Fig. 6(d) it is

seen that 173.il and 17~~ are both real and of unity abso-

lute magnitude. By comparing the values of 1’1, when

17~ equals 1 and – 1 respectively, it can be shown that

17s~ = 1 and rs~ = — 1. When a short circuited transmis-

sion line, of such length Sx that rj = 1’3~ = 1, terminates

the network at Tz (see Fig. 4) one may look into the net-

work at 23 (toward the right) and equate the impedance

seen to infinity, since an open circuit is located at this

point in view of the special termination. From this rela-

tion one obtains

1
cot ,61 = —– tan 8(12 + SM). (13)

n12

Likewise, when the transmission line is of such length

S~ that rs = rt~ = – 1, a short circuit appears at 23 so

that one gets

1
— tan ,81 = — tan ,f3(lj + S~). (14)

nlz

Upon eliminating the tan ~Z term from (13) and (14),

12 is found to be

‘2=+{+lc0s-1EH:cOs”@M-sm)l

}
‘sM–sm . (15)

In view of the arc cosine, (15) does not yield 12

uniquely. The resulting ambiguity is resolved on the

basis of the symmetry requirement; it follows that

(d, –d2) in Fig. 7 must equal (11 –12) in Fig. 4, i.e.,

lz=lli-dz-d,. (16)

Here 11 is known accurately from (10). As a rule, dl and

d, need not be known accurately, since 1, need only be

found to a first order from (16). That value of L re-

sulting from (15) which most closely corresponds to

the value found via (16) is assumed to be correct. It

should be noted that such a procedure places greater

reliance on the electrical measurement, which is based

on relative distance measurements and is consequently

generally more accurate, than on absolute distance

measurements.

The values of S.U and Sn to be used in (15) may be

obtained graphically with reference to Fig. 8. S~ has

been so chosen that rs = 1, i.e., in such a manner that

the corresponding value in the I’;-plane is riM. 00, the

argument associated with r.M, is obtained from the data

circle and D,w, the corresponding value of D, can then

be computed from (9). S~r is read from a D vs. S curve

such as the one shown in Fig. 8(b). In a like fashion,

S% can be abstracted by starting with the argument of

17i~, which in the case shown in Fig. 8 differs from that

of l?i~ by w. When 17~~ and l?t~ have the same argument

(which is the case when the data circle does not include

the origin), D~ ‘DJI. and the values of S. and S~ must

be distinguished by considering the approximate values

of I I’i I associated with the two values of S read from

the D vs. S curve.

It follows directly from (14) that

[ 11=–+-tan–l ~ tan ~(lz + S.) , (17)
?’312

where 12 may be considered to be known. The two values

of the arc tangent leave 1 in doubt only by a trivial addi-

tive term of A,/2.
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THE DUAL NETWORK

The definition of duality employed here is that al-

ready given elsewhere.7 As has been stated, the dual of

an w: 1 transformer is a 1: n transformer. It can be

shown that both transmission lines and reflection coeffi-

cient transformers are their own duals, i.e., both the

form of the elements and their associated numerical

values remain unchanged in going to the dual repre-

sentation. In consequence the network dual of the

modified Wheeler network is identical to the modified

Wheeler network itself (see Fig. 4) except for the indi-

cated inversion of the transformers and for a quarter

wavelength shift of each reference plane. The dual dis-

cussed here is actually the network that results if a

single change is made in the original analysis; namely,

if instead of defining 11 so that the center of the circle

in the I’1-plane falls on the positive real axis, it is so

defined that the center falls on the negative real axis.

RELATION OF THE SYMMETRIC MODIFIED WHEELER

NETWORK TO THE Ihm2wmcE TEE AND THE

ADMITTANCE PI REPRESENTATIONS

As pointed out earlier, it is always possible to repre-

sent a four-pole at special reference planes Tlf and Tz’

by only two transformers joined by a lossy transmission

line (see Fig. 5). In particular, a symmetric structure

may be represented in this fashion with the further

simplification that nl = W2. The relationship of this sym-

metric representation and of its dual to the equivalent

impedance Tee and admittance Pi networks at the same

reference planes are shown in Fig. 9.

Let the modified Wheeler network at T1’ and Tz’ and

the corresponding Tee be considered. Upon applying

open and short circuit bisection to both networks and

equating the real and imaginary parts of the input im-

pedances, one obtains

‘Z’’anh%an$+o,18,
Rll + Rlt =

tan, p + tanh, g ‘

2 2

It is readily shown that in these equations

(22)

The parameters of the equivalent Tee are obtainecl at

once from (18) to (22). Since the value of 1 used here is

known only to within an additive constant of hQ/2,

tan (&/2) may have one of two values depending on the

original choice of Z. If, say, the quantities in (18) to (21)

result from tan (f?l/2) and the corresponding primed

quantities [in (23) below] result from tan [~(Z+l,/2)/2 ]

then

y--.7--7

I I

A r] I

I a –? (e)

I (z-+
,?$

f%- 4,) (, FfffY/J’fAL’&Nr

\ ! /%fd 07’$’ )

“’tanh%an2:+1),,.,
Rll — RICJ === 1-

1 + tanz ~ tanh2 ~

7 H. Kurss, Appendix in L. B. Felsen and A. A. Oliner, ~’The
Precision Measurement of Equivalent Circuit Parameters of Dissi-
pative Microwave Structures, ” Report R-282-52: PIB-221, Polytech-
nic Inst. of B’klyn, Microwave Res. Inst.; November, 1952.

Fig. 9—Modified Wheeler network at special reference planes, its dual
and their equivalent Tee and Pi networks.

This ambiguity is identically the one that occurs in

other input-output impedance type measurements

where the sign of Zlz, Ylt or SIz remains in doubt. Re-

gardless of the choice of sign, the resulting Tee is valid as

an impedance transforming network. cxl/2, on the other

hand, is independent of the choice of 1 in view of the

definition of a [see (8)].
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Since the planes T,’ and T2’ are specially chosen to

eliminate 11and 12, the symmetric modified Wheeler net-

work at these planes is described by only the three

parameters m, \I’~1 and 1 (or til, a and 1). The equiva-

lent Tee, however, requires four parameters for its com-

plete description, i.e., Rll, Xll, RIZ and X12. It can con-

sequently be concluded that the choice of the special

planes T1’ and Tz’ leaves only three of these independent

and makes the fourth subject to some restrictive rela-

tion. Inspection of (18) to (21) above shows that this

relation is

The relations yielding the parameters n,, 1 and I l?.]

in terms of a given Tee can also be obtained from (18)

to (21) by simple but tedious algebraic computations.

MATCHING THE MODIFIED WHEELER NETWORK

Wheeler points out that it is theoretically always pos-

sible to achieve a bilateral match for a network of the

type shown in Fig. 1. This, of course, also applies to the

present network (Fig. 4 or 5). When the input and out-

put transmission lines are of the same characteristic

impedance, the match may be achieved here by placing

R,l + Rlt RII – RIZ /
——— . — ———. (24)
X11 + X12 X11 – X12 ‘

from which it follows that

R1lX1l = RuXM. (2,) 3@#z,@J
I:nl .. /

~1

The parameters of the admittance Pi in terms of the
--J

modified Wheeler network can also be obtained via a bi-
) —-+~z )

v v

C0NJUGA7f Of WRIT KEACi%Kf

section procedure. If this is done and if the Pi and Tee
a!/w#T mr.=vr

/N&T R[42Wtf rvrwlow ,ezAc7k’7?eK
M,TIW

/%?rc%z4’iG
,a7Rnau /.447Aax7/Y

parameters are compared, the following surprisingly
Fig. 10—Modified Wneeler network and

simple relations are found: adjacent matching structures.

Yll = 211/)’214, Y12 = 212/?21’. (26)

Consequently, the Pi may be obtained from the Tee

(or vice versa) almost without effort. Eq. [26) shows

that n14 = I Z I where I Z I =2112 — 2122 (the impedance

determinant) and that, consequently, the impedance

(or admittance) determinant at T1’ and T,’ is real. Of

course, the dual of the Tee at T~’ and Tz! (i.e., the Pi

YII*, Y12*) is given by

YI1* = 211, Y12* = 212, (27)

the appropriate conjugate network at each end. When

the input and output transmission line characteristic

impedances differ, the conjugate of the 1: nz transformer,

which is n2: 1, must be modified to be nzv’Zl/Z2,: 1. The

network and the appropriate matching networks (as-

suming two different characteristic impedances) are

shown in Fig. 10. A conjugate for line 1 may, but need

not, be appended since it does not affect the matching of

the network.
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